Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

cis-Dichloridobis(diethylphenylphosphine-*κP*)platinum(II)

Wioleta Domańska-Babul, Jerzy Pikies and Jaroslaw Chojnacki*

Chemical Faculty, Gdansk University of Technology, Narutowicza 11/12, Gdansk PL-80952, Poland

Correspondence e-mail: jarekch@chem.pg.gda.pl

Received 4 September 2007; accepted 17 September 2007

Key indicators: single-crystal X-ray study: T = 120 K: mean $\sigma(C-C) = 0.007$ Å: R factor = 0.025; wR factor = 0.089; data-to-parameter ratio = 18.7.

In the title compound, $[PtCl_2(C_{10}H_{15}P)_2]$, the Pt atom adopts a slightly distorted square-planar geometry. The phenyl rings form dihedral angles of 82.21 (11) and 79.98 (11) $^{\circ}$ with the PtCl₂P₂ mean plane. The crystal structure is stabilized by weak intra- and intermolecular C-H···Cl hydrogen bonds.

Related literature

For the structure of the related cis-dichloridobis-(ethyldiphenylphosphine- κP)platinum(II) compound, see: Domanska-Babul, Chojnacki & Pikies (2007). For related literature, see: Choinacki et al. (2007): Domanska-Babul. Chojnacki, Matern & Pikies (2007); Ho et al. (1982); Matern et al. (2000); Porzio et al. (1980).

Experimental

Crystal data

[PtCl₂(C₁₀H₁₅P)₂] $M_r = 598.37$ Monoclinic, $P2_1/c$ a = 14.8957 (5) Å b = 9.0402 (5) Å c = 16.3565 (5) Å $\beta = 94.865 (3)^{\circ}$

 $V = 2194.63 (16) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 6.79 \text{ mm}^{-1}$ T = 120 (2) K $0.16 \times 0.11 \times 0.06 \; \rm mm$ $R_{\rm int} = 0.013$

9492 measured reflections

4301 independent reflections

4145 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction KM-4 CCD

diffractometer Absorption correction: analytical [CrysAlis RED; Oxford Diffraction (2006), Clark & Reid (1995)] $T_{\min} = 0.278, T_{\max} = 0.398$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.025$	230 parameters
$wR(F^2) = 0.089$	H-atom parameters constrained
S = 1.36	$\Delta \rho_{\rm max} = 1.33 \text{ e} \text{ Å}^{-3}$
4301 reflections	$\Delta \rho_{\rm min} = -1.25$ e Å ⁻³

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C7 - H7A \cdots Cl1$ $C19 - H19A \cdots Cl2$ $C5 - H5 \cdots Cl1^{i}$ $C17 - H17A \cdots Cl1^{ii}$	0.99 0.99 0.95 0.99	2.67 2.77 2.78 2.51	3.178 (5) 3.155 (5) 3.677 (5) 3.382 (5)	112 103 158 146

Symmetry codes: (i) $-x, y + \frac{1}{2}, -z + \frac{1}{2}$; (ii) x, y + 1, z.

Data collection: CrysAlis CCD (Oxford Diffraction, 2006); cell refinement: CrysAlis RED (Oxford Diffraction, 2006); data reduction: CrysAlis RED; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2003).

WD-B and JP thank the Polish State Committee for Scientific Research (project No. 1 T09A 148 30) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2163).

References

- Chojnacki, J., Robaszkiewicz, A., Matern, E., Baum, E. & Pikies, J. (2007). Acta Cryst. E63, m680-m682.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.
- Domanska-Babul, W., Chojnacki, J., Matern, E. & Pikies, J. (2007). J. Organomet. Chem. 692, 3640-3648.
- Domanska-Babul, W., Chojnacki, J. & Pikies, J. (2007). Acta Cryst. E63, m1956. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Ho, K.-C., McLaughlin, G. M., McPartlin, M. & Robertson, G. B. (1982). Acta Cryst. B38, 421-425.
- Matern, E., Pikies, J. & Fritz, G. (2000). Z. Anorg. Allg. Chem. 626, 2136-2142. Oxford Diffraction (2006). CrysAlis CCD and CrysAlis RED. Versions
- 1.171.29.9. Oxford Diffraction Ltd, Abingdon, Oxfordshire, England. Porzio, W., Musco, A. & Immirzi, A. (1980). Inorg. Chem. 19, 2537-2540.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany,
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.

Acta Cryst. (2007). E63, m2583 [doi:10.1107/S1600536807045540]

cis-Dichloridobis(diethylphenylphosphine-KP)platinum(II)

W. Domanska-Babul, J. Pikies and J. Chojnacki

Comment

We have a standing interest in the reactivity of $[(R_3P)_2PtCl_2]$ compounds towards diphosphanes (Domanska-Babul, Chojnacki, Matern & Pikies, 2007). The title compound, $[(Et_2PhP)_2PtCl_2]$, was obtained according to the published procedure (Matern *et al.*, 2000) and recovered from the reaction mixture during the studies.

An *ORTEP* plot of the title compound is shown in Fig. 1. The geometry of the Pt atom is slightly distorted square planar with the metal displaced by only 0.0007 (2) Å from the PtCl₂P₂ mean plane. The Cl and P atoms display a substantial tetrahedral distortion, being displaced by 0.1647 (13), -0.1394 (13), -0.1349 (13) and 0.1267 (12) Å for Cl1, Cl2, P1 and P2 respectively. For comparison, the displacements found for the same atoms in the related complex [(EtPh₂P)₂PtCl₂] (Domanska-Babul, Chojnacki & Pikies 2007) are -0.0238 (5), -0.0008 (5), -0.0251 (5) and -0.0060 (5) Å respectively. Even more significant departures from planarity are observed in the case of sterically demanding phosphanes ligands, *viz.* in [*cis*-(^{*t*}Bu₂PhP)₂PtCl₂] (Porzio *et al.*, 1980). The bond angle P1–Pt–P2 of 94.43 (4)° indicates steric repulsion of the PhEt₂P groups smaller than those observed for the EtPh₂P groups in [(EtPh₂P)₂PtCl₂] (100.23 °) and for the MePh₂P groups in [(MePh₂P)₂PtCl₂] (98.11 °; Ho *et al.*, 1982). The average Pt–P and Pt–Cl distances of 2.253 (13) Å and 2.356 (12) Å respectively are typical for [*cis*-(*R*₃P)₂PtCl₂] complexes. The dihedral angles formed by the C1—C6 and C11—C16 phenyl rings with the PtCl₂P₂ mean plane are 82.21 (11) and 79.98 (11) ° respectively. The crystal structure is reinforced by weak intra- and intermolecular C—H···Cl hydrogen interactions (Table 1).

Experimental

The title compound compound [*cis*-{ $C_6H_5(C_2H_5)_2P$ }_PtCl₂] has been obtained as yellow powder in the reaction of a solution of phenyl(diethyl)phosphane in ethanol with a solution of potassium tetrachloroplatinate(II) in water (Matern *et al.*, 2000). Slow crystallization from THF at ambient temperature yielded crystals suitable for X-ray analysis.

Refinement

All C–H hydrogen atoms were refined as riding on carbon atoms with methyl C–H = 0.98 Å, methylen C–H = 0.99 Å, aromatic C–H = 0.95 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$ for aromatic CH, 1.3 for CH₂ groups and 1.5 for methyl groups.

Figures

Fig. 1. View of the title compound (50% probability displacement ellipsoids). H atoms are omitted for clarity.

cis-Dichloridobis(diethylphenylphosphine-κP)platinum(II)

$[PtCl_2(C_{10}H_{15}P)_2]$	$F_{000} = 1168$
$M_r = 598.37$	$D_{\rm x} = 1.811 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 12825 reflections
a = 14.8957 (5) Å	$\theta = 2.3 - 32.4^{\circ}$
b = 9.0402 (5) Å	$\mu = 6.79 \text{ mm}^{-1}$
c = 16.3565 (5) Å	T = 120 (2) K
$\beta = 94.865 \ (3)^{\circ}$	Prism, colourless
$V = 2194.63 (16) \text{ Å}^3$	$0.16 \times 0.11 \times 0.06 \text{ mm}$
Z = 4	
Data collection	
Oxford Diffraction KM-4 CCD diffractometer	4145 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.013$
$0.75^{\circ} \omega$ scans	$\theta_{\text{max}} = 26^{\circ}$
Absorption correction: analytical [CrysAlis RED; Oxford Diffraction (2006), Clark & Reid (1995)]	$\theta_{\min} = 2.5^{\circ}$
$T_{\min} = 0.278, T_{\max} = 0.398$	$h = -17 \rightarrow 18$
9492 measured reflections	$k = -11 \rightarrow 8$

Refinement

4301 independent reflections

Refinement on F^2	H-atom parameters constrained		
Least-squares matrix: full	$w = 1/[\sigma^2(F_0^2) + (0.0454P)^2 + 6.1376P]$ where $P = (F_0^2 + 2F_c^2)/3$		
$R[F^2 > 2\sigma(F^2)] = 0.025$	$(\Delta/\sigma)_{\rm max} = 0.003$		
$wR(F^2) = 0.089$	$\Delta \rho_{max} = 1.33 \text{ e} \text{ Å}^{-3}$		

 $l = -20 \rightarrow 19$

S = 1.364301 reflections 230 parameters
$$\label{eq:rhom} \begin{split} \Delta \rho_{min} = -1.25 \ e \ {\rm \AA}^{-3} \\ Extinction \ correction: \ none \end{split}$$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Pt1	0.251723 (11)	0.969895 (18)	0.300696 (10)	0.01372 (9)
Cl1	0.23065 (9)	0.71248 (14)	0.29244 (8)	0.0258 (3)
C12	0.27795 (9)	0.93276 (16)	0.44366 (7)	0.0252 (3)
P1	0.20696 (9)	0.99057 (15)	0.16603 (8)	0.0161 (2)
P2	0.29263 (8)	1.20887 (13)	0.31503 (7)	0.0142 (2)
C1	0.1381 (3)	1.1543 (6)	0.1407 (3)	0.0172 (9)
C2	0.1664 (3)	1.2704 (6)	0.0932 (3)	0.0211 (10)
H2	0.2229	1.264	0.0706	0.025*
C3	0.1137 (4)	1.3946 (6)	0.0786 (3)	0.0255 (11)
Н3	0.1344	1.4734	0.0467	0.031*
C4	0.0304 (4)	1.4047 (7)	0.1106 (3)	0.0283 (12)
H4	-0.0058	1.4903	0.1007	0.034*
C5	0.0006 (3)	1.2896 (7)	0.1570 (3)	0.0277 (12)
H5	-0.0568	1.2955	0.1781	0.033*
C6	0.0542 (3)	1.1656 (6)	0.1728 (3)	0.0216 (10)
H6	0.0338	1.0878	0.2056	0.026*
C7	0.1319 (3)	0.8410 (6)	0.1277 (3)	0.0246 (11)
H7A	0.1636	0.7455	0.1371	0.032*
H7B	0.0784	0.8399	0.1597	0.032*
C8	0.1001 (4)	0.8539 (7)	0.0362 (3)	0.0300 (12)
H8A	0.0785	0.9547	0.0243	0.045*
H8B	0.0511	0.7835	0.0227	0.045*
H8C	0.1505	0.8318	0.0033	0.045*
C9	0.2961 (4)	0.9903 (6)	0.0959 (3)	0.0201 (10)
H9A	0.269	0.9986	0.0387	0.026*
H9B	0.3357	1.0771	0.1074	0.026*
C10	0.3520 (4)	0.8496 (7)	0.1050 (4)	0.0295 (12)
H10A	0.3808	0.8432	0.161	0.044*
H10B	0.3984	0.8514	0.0659	0.044*
H10C	0.3128	0.7636	0.0938	0.044*
C11	0.3676 (3)	1.2696 (5)	0.2393 (3)	0.0152 (9)
C12	0.3512 (3)	1.3932 (6)	0.1890 (3)	0.0187 (9)
H12	0.2988	1.4515	0.1938	0.022*
C13	0.4116 (4)	1.4313 (6)	0.1317 (3)	0.0235 (10)

H13	0.3987	1.5126	0.0959	0.028*
C14	0.4902 (3)	1.3512 (6)	0.1268 (3)	0.0250 (11)
H14	0.5311	1.3776	0.0878	0.03*
C15	0.5094 (3)	1.2316 (6)	0.1794 (3)	0.0233 (10)
H15	0.5646	1.1795	0.1779	0.028*
C16	0.4478 (3)	1.1887 (6)	0.2339 (3)	0.0205 (10)
H16	0.4597	1.1044	0.2677	0.025*
C17	0.2020 (3)	1.3438 (5)	0.3135 (3)	0.0175 (9)
H17A	0.2277	1.4422	0.3282	0.023*
H17B	0.1721	1.3503	0.2572	0.023*
C18	0.1314 (4)	1.3038 (7)	0.3732 (3)	0.0274 (12)
H18A	0.1015	1.2111	0.3557	0.041*
H18B	0.0866	1.3831	0.3734	0.041*
H18C	0.1612	1.2917	0.4286	0.041*
C19	0.3615 (3)	1.2459 (6)	0.4116 (3)	0.0194 (10)
H19A	0.324	1.2295	0.4579	0.025*
H19B	0.4117	1.1739	0.4171	0.025*
C20	0.4005 (4)	1.4016 (6)	0.4183 (3)	0.0251 (11)
H20A	0.4417	1.4165	0.3753	0.038*
H20B	0.4335	1.4144	0.4723	0.038*
H20C	0.3515	1.4741	0.4116	0.038*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pt1	0.01339 (12)	0.01029 (13)	0.01751 (13)	0.00008 (6)	0.00151 (8)	0.00160 (6)
Cl1	0.0306 (6)	0.0100 (5)	0.0368 (7)	-0.0006 (5)	0.0024 (5)	0.0022 (5)
Cl2	0.0323 (6)	0.0244 (6)	0.0186 (6)	-0.0026 (5)	-0.0003 (5)	0.0078 (5)
P1	0.0162 (6)	0.0141 (5)	0.0176 (6)	-0.0015 (5)	-0.0002 (5)	-0.0014 (5)
P2	0.0155 (5)	0.0109 (5)	0.0162 (5)	-0.0012 (4)	0.0015 (4)	0.0004 (4)
C1	0.014 (2)	0.020 (3)	0.017 (2)	0.0010 (18)	-0.0018 (17)	-0.0036 (19)
C2	0.023 (2)	0.024 (3)	0.016 (2)	-0.001 (2)	0.0022 (18)	-0.001 (2)
C3	0.033 (3)	0.023 (3)	0.020 (2)	0.004 (2)	-0.002 (2)	-0.001 (2)
C4	0.030 (3)	0.029 (3)	0.025 (3)	0.014 (2)	-0.006 (2)	-0.004 (2)
C5	0.018 (2)	0.038 (3)	0.026 (3)	0.008 (2)	-0.002 (2)	-0.007 (2)
C6	0.017 (2)	0.027 (3)	0.021 (2)	-0.002 (2)	0.0008 (18)	-0.004 (2)
C7	0.019 (2)	0.021 (3)	0.032 (3)	-0.004 (2)	-0.001 (2)	-0.005 (2)
C8	0.027 (3)	0.031 (3)	0.031 (3)	-0.005 (2)	-0.004 (2)	-0.010 (2)
C9	0.019 (2)	0.022 (2)	0.019 (2)	0.001 (2)	0.0013 (19)	-0.005 (2)
C10	0.027 (3)	0.029 (3)	0.033 (3)	0.009 (2)	0.007 (2)	-0.006 (2)
C11	0.012 (2)	0.016 (2)	0.018 (2)	-0.0026 (17)	0.0007 (16)	-0.0025 (18)
C12	0.017 (2)	0.019 (2)	0.020 (2)	-0.0029 (18)	0.0009 (18)	-0.0012 (19)
C13	0.025 (3)	0.022 (2)	0.023 (2)	-0.007 (2)	0.002 (2)	0.004 (2)
C14	0.023 (2)	0.029 (3)	0.025 (2)	-0.008 (2)	0.008 (2)	-0.005 (2)
C15	0.015 (2)	0.024 (3)	0.031 (3)	-0.001 (2)	0.0034 (19)	-0.006 (2)
C16	0.020 (2)	0.017 (2)	0.024 (2)	0.0005 (19)	0.0007 (19)	-0.001 (2)
C17	0.019 (2)	0.012 (2)	0.021 (2)	0.0048 (18)	0.0011 (18)	0.0007 (18)
C18	0.024 (3)	0.034 (3)	0.026 (3)	0.006 (2)	0.011 (2)	0.003 (2)

C19	0.017 (2)	0.022 (3)	0.018 (2)	-0.0030 (19)	-0.0016 (17)	-0.0003 (19)
C20	0.025 (3)	0.027 (3)	0.023 (2)	-0.005 (2)	0.000 (2)	-0.005 (2)
Geometric parar	neters (Å, °)					
Pt1—P2		2.2515 (12)	С9—Н9)A	0.99	
Pt1—P1		2.2544 (13)	С9—Н9)B	0.99	
Pt1—Cl1		2.3505 (12)	C10—H	I10A	0.98	
Pt1—Cl2		2.3619 (12)	C10—H	I10B	0.98	
P1—C9		1.828 (5)	C10—H	I10C	0.98	
P1—C1		1.828 (5)	C11—C	212	1.397	7 (7)
P1—C7		1.831 (5)	C11—C	216	1.409	9(7)
P2—C17		1.818 (5)	C12—C	213	1.390	5 (7)
P2—C11		1.822 (5)	С12—Н	112	0.95	
P2—C19		1.840 (5)	C13—C	214	1.38	5 (8)
C1—C2		1.392 (7)	С13—Н	113	0.95	
C1—C6		1.400 (7)	C14—C	215	1.39	5 (8)
C2—C3		1.379 (8)	C14—H	[14	0.95	
С2—Н2		0.95	C15—C	216	1.38	7 (7)
C3—C4		1.390 (8)	C15—H	115	0.95	
С3—Н3		0.95	C16—H	116	0.95	
C4—C5		1.383 (9)	C17—C	218	1.53	7 (7)
C4—H4		0.95	С17—Н	[17A	0.99	
С5—С6		1.388 (8)	С17—Н	I17B	0.99	
С5—Н5		0.95	C18—H	[18A	0.98	
С6—Н6		0.95	C18—H	I18B	0.98	
С7—С8		1.535 (8)	C18—H	I18C	0.98	
C7—H7A		0.99	C19—C	220	1.523	3 (7)
С7—Н7В		0.99	C19—H	[19A	0.99	
C8—H8A		0.98	C19—H	I19B	0.99	
C8—H8B		0.98	С20—Н	I20A	0.98	
C8—H8C		0.98	С20—Н	I20B	0.98	
C9—C10		1.520 (7)	C20—H	I20C	0.98	
P2—Pt1—P1		94.43 (4)	C10—C	С9—Н9В	109.4	1
P2-Pt1-Cl1		171.72 (4)	Р1—С9	—Н9В	109.4	1
P1—Pt1—Cl1		89.94 (5)	Н9А—6	С9—Н9В	108	
P2-Pt1-Cl2		90.73 (5)	C9—C1	0—H10A	109.:	5
P1—Pt1—Cl2		171.70 (5)	C9—C1	0—H10B	109.:	5
Cl1—Pt1—Cl2		85.77 (5)	H10A-	-C10—H10B	109.:	5
C9—P1—C1		106.4 (2)	C9—C1	0—H10C	109.:	5
C9—P1—C7		103.8 (2)	H10A—	-C10—H10C	109.:	5
C1—P1—C7		101.9 (2)	H10B—	-C10—H10C	109.:	5
C9—P1—Pt1		116.29 (18)	C12—C	C11—C16	119.0) (4)
C1—P1—Pt1		113.72 (16)	C12—C	211—P2	123.7	7 (4)
C7—P1—Pt1		113.26 (19)	C16—C	211—P2	117.3	3 (4)
C17—P2—C11		106.6 (2)	C13—C	C12—C11	120.	l (5)
C17—P2—C19		104.4 (2)	C13—C	С12—Н12	120	
C11—P2—C19		101.5 (2)	C11—C	C12—H12	120	
C17—P2—Pt1		116.61 (16)	C14—C	C13—C12	120.4	4 (5)

C11—P2—Pt1	113 22 (16)	C14—C13—H13	119.8
C19 - P2 - Pt1	112.99 (17)	C12—C13—H13	119.8
$C_{2} - C_{1} - C_{6}$	118.4 (5)	C13 - C14 - C15	120.0 (5)
$C_2 - C_1 - P_1$	123 1 (4)	C13—C14—H14	120.0 (0)
C6-C1-P1	118 4 (4)	C15-C14-H14	120
C_{3} C_{2} C_{1}	121.1 (5)	C16-C15-C14	1200(5)
C_{3} C_{2} H_{2}	119.5	C16—C15—H15	120.0 (5)
C1—C2—H2	119.5	C14—C15—H15	120
$C_2 - C_3 - C_4$	120 1 (5)	C15-C16-C11	120 4 (5)
C2—C3—H3	120	C15-C16-H16	119.8
C4—C3—H3	120	C11—C16—H16	119.8
$C_{5} - C_{4} - C_{3}$	1197(5)	C18 - C17 - P2	112.3 (3)
C5—C4—H4	120.1	C18 - C17 - H17A	109.1
C3—C4—H4	120.1	P2-C17-H17A	109.1
C4-C5-C6	120.1	C18 - C17 - H17B	109.1
C4—C5—H5	119.9	P2H17B	109.1
C6_C5_H5	119.9	H17A_C17_H17B	107.9
C_{5} C_{6} C_{1}	120.5 (5)	C17 - C18 - H18A	107.5
C5-C6-H6	119.8	C17_C18_H18B	109.5
C1-C6-H6	119.8	H18A - C18 - H18B	109.5
C8_C7_P1	114.0 (4)	C17 - C18 - H18C	109.5
C8_C7_H7A	108.8	$H_{18} - C_{18} - H_{18} C$	109.5
P1H7A	108.8	H18B - C18 - H18C	109.5
C8_C7_H7B	108.8	$C_{20} - C_{10} - P_{2}$	107.3 114.3(4)
P1H7B	108.8	$C_{20} - C_{10} - H_{10}$	108 7
$H_{-C} = H_{-H}$	103.8	$P_{2} = C_{10} = H_{10A}$	108.7
$\Pi/A = C / = \Pi/B$	107.0	C20 C10 H10P	108.7
$C_{1} = C_{0} = H_{0} R_{0}$	109.5	$C_{20} - C_{19} - H_{19B}$	108.7
	109.5	F2-C19-1119D	108.7
10A - Co - 10B	109.5	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	107.0
	109.5	C_{19} C_{20} H_{20R}	109.5
	109.5	$C_{19} - C_{20} - H_{20B}$	109.5
$\Pi \delta B - C \delta - \Pi \delta C$	109.5	$H_2 UA - C_2 U - H_2 UB$	109.5
C10 = C9 = P1	111.1 (4)	$C_{19} - C_{20} - H_{20}C$	109.5
C10-C9-H9A	109.4	$H_{20}A = C_{20} = H_{20}C$	109.5
	109.4	H20B-C20-H20C	109.5
Cl1—Pt1—P1—C1	141.79 (18)	C17—P2—C11—C12	-3.0 (5)
Cl1—Pt1—P1—C7	26.11 (18)	C17—P2—C11—C16	174.8 (4)
Cl1—Pt1—P1—C9	-94.1 (2)	C19—P2—C11—C12	-112.1 (4)
P2—Pt1—P1—C1	-45.25 (18)	C19—P2—C11—C16	65.8 (4)
P2—Pt1—P1—C7	-160.93 (18)	Pt1—P2—C17—C18	50.7 (4)
P2—Pt1—P1—C9	78.9 (2)	C11—P2—C17—C18	178.3 (3)
Cl2—Pt1—P2—C11	135.17 (17)	C19—P2—C17—C18	-74.8 (4)
Cl2—Pt1—P2—C17	-100.55 (18)	Pt1—P2—C19—C20	172.4 (3)
Cl2—Pt1—P2—C19	20.46 (17)	C11—P2—C19—C20	50.8 (4)
P1—Pt1—P2—C11	-51.34 (17)	C17—P2—C19—C20	-59.9 (4)
P1—Pt1—P2—C17	72.95 (18)	P1—C1—C2—C3	-177.3 (4)
P1—Pt1—P2—C19	-166.05 (17)	C6—C1—C2—C3	0.5 (7)
Pt1—P1—C1—C2	113.7 (4)	P1—C1—C6—C5	178.3 (4)
Pt1—P1—C1—C6	-64.1 (4)	C2—C1—C6—C5	0.4 (7)

C7—P1—C1—C2	-124.1 (4)	C1—C2—C3—C4	-0.7 (8)
C7—P1—C1—C6	58.2 (4)	C2—C3—C4—C5	-0.1 (8)
C9—P1—C1—C2	-15.6 (5)	C3—C4—C5—C6	1.1 (8)
C9—P1—C1—C6	166.6 (4)	C4—C5—C6—C1	-1.2 (8)
Pt1—P1—C7—C8	179.5 (3)	P2-C11-C12-C13	-179.2 (4)
C1—P1—C7—C8	57.0 (4)	C16-C11-C12-C13	3.0 (7)
C9—P1—C7—C8	-53.4 (4)	P2-C11-C16-C15	-178.0 (4)
Pt1—P1—C9—C10	58.3 (4)	C12-C11-C16-C15	0.0 (7)
C1—P1—C9—C10	-173.8 (4)	C11-C12-C13-C14	-3.1 (8)
C7—P1—C9—C10	-66.8 (4)	C12-C13-C14-C15	0.1 (8)
Pt1—P2—C11—C12	126.5 (4)	C13-C14-C15-C16	2.9 (8)
Pt1—P2—C11—C16	-55.6 (4)	C14-C15-C16-C11	-2.9 (8)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
C7—H7A···Cl1	0.99	2.67	3.178 (5)	112
C19—H19A…Cl2	0.99	2.77	3.155 (5)	103
C5—H5···Cl1 ⁱ	0.95	2.78	3.677 (5)	158
C17—H17A…Cl1 ⁱⁱ	0.99	2.51	3.382 (5)	146
Symmetry codes: (i) $-x$, $y+1/2$, $-z+1/2$; (ii) x , $y+1$, z .				

Fig. 1